dataio.schemas.bonsai_api package

Submodules

dataio.schemas.bonsai_api.PPF_fact_schemas_samples module

class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.Emissions_samples(*, samples: list[float], time: int, year_emission: int | None = None, location: str, activity: str, activity_unit: str, emission_substance: str, compartment: str, product: str, product_unit: str, value: float, unit: str, flag: str | None = None, elementary_type: str = 'emission')[source]

Bases: FactBaseModel_samples

activity: str
activity_unit: str
compartment: str
elementary_type: str
emission_substance: str
flag: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
product_unit: str
time: int
unit: str
value: float
year_emission: int | None
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.FinalUses_samples(*, samples: list[float], location: str, product: str, final_user: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_samples

final_user: str
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.Imports_samples(*, samples: list[float], location: str, product: str, product_origin: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_samples

location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
product_origin: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.OutputTotals_samples(*, samples: list[float], location: str, activity: str, output_compartment: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_samples

activity: str
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

output_compartment: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.PackagingData_samples(*, samples: list[float], location: str, product: str, activity: str, unit: str, value: float, product_destination: str | None = None, associated_product: str | None = None, flag: str | None = None, time: int, product_type: str = 'supply', account_type: str | None = None)[source]

Bases: Supply_samples

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.ProductionVolumes_samples(*, samples: list[float], location: str, product: str, activity: str | None = None, unit: str, value: float, flag: str | None = None, time: int, inventory_time: int | None = None, source: str | None = None, comment: str | None = None, price_type: str | None = None, account_type: str | None = None)[source]

Bases: FactBaseModel_samples

account_type: str | None
activity: str | None
comment: str | None
flag: str | None
inventory_time: int | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

price_type: str | None
product: str
source: str | None
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.PropertyOfProducts_samples(*, samples: list[float], location: str | None = None, product: str, value: float, activity: str | None = None, unit: str, description: str | None = None)[source]

Bases: FactBaseModel_samples

activity: str | None
description: str | None
location: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.Resource_samples(*, samples: list[float], time: int, year_emission: int | None = None, location: str, activity: str, activity_unit: str, emission_substance: str, compartment: str, product: str, product_unit: str, value: float, unit: str, flag: str | None = None, elementary_type: str = 'emission')[source]

Bases: Emissions_samples

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.SUTAdjustments_samples(*, samples: list[float], location: str, adjustment: str, product: str | None = None, product_origin: str | None = None, final_user: str | None = None, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_samples

adjustment: str
final_user: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str | None
product_origin: str | None
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.SocialSatellite_samples(*, samples: list[float], location: str, activity: str, social_flow: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_samples

activity: str
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

social_flow: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.Supply_samples(*, samples: list[float], location: str, product: str, activity: str, unit: str, value: float, product_destination: str | None = None, associated_product: str | None = None, flag: str | None = None, time: int, product_type: str = 'supply', account_type: str | None = None)[source]

Bases: FactBaseModel_samples

account_type: str | None
activity: str
associated_product: str | None
flag: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
product_destination: str | None
product_type: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.Trade_samples(*, samples: list[float], time: int, product: str, export_location: str, import_location: str, value: float, unit: str, flag: str | None = None, price_type: str | None = None, source: str | None = None, account_type: str | None = None)[source]

Bases: FactBaseModel_samples

account_type: str | None
export_location: str
flag: str | None
import_location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

price_type: str | None
product: str
source: str | None
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.TransferCoefficient_samples(*, samples: list[float], location: str | None = None, output: str, input_product: str, activity: str, coefficient_value: float, unit: str, flag: str | None = None, time: int | None = None, transfer_type: str)[source]

Bases: FactBaseModel_samples

activity: str
coefficient_value: float
flag: str | None
input_product: str
location: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

output: str
time: int | None
transfer_type: str
unit: str
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.Use_samples(*, samples: list[float], location: str, product: str, activity: str, unit: str, value: float, associated_product: str | None = None, flag: str | None = None, time: int, product_origin: str | None = None, product_type: str = 'use', account_type: str | None = None)[source]

Bases: FactBaseModel_samples

account_type: str | None
activity: str
associated_product: str | None
flag: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
product_origin: str | None
product_type: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.Valuation_samples(*, samples: list[float], location: str, product: str, valuation: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_samples

location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
time: int
unit: str
valuation: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.ValueAdded_samples(*, samples: list[float], location: str, activity: str, value_added_component: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_samples

activity: str
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

time: int
unit: str
value: float
value_added_component: str
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.WasteSupply_samples(*, samples: list[float], location: str, product: str, activity: str, unit: str, value: float, product_destination: str | None = None, associated_product: str | None = None, flag: str | None = None, time: int, product_type: str = 'supply', account_type: str | None = None, waste_fraction: bool)[source]

Bases: Supply_samples

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

waste_fraction: bool
class dataio.schemas.bonsai_api.PPF_fact_schemas_samples.WasteUse_samples(*, samples: list[float], location: str, product: str, activity: str, unit: str, value: float, associated_product: str | None = None, flag: str | None = None, time: int, product_origin: str | None = None, product_type: str = 'use', account_type: str | None = None, waste_fraction: bool)[source]

Bases: Use_samples

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

waste_fraction: bool

dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty module

class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.Emissions_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, time: int, year_emission: int | None = None, location: str, activity: str, activity_unit: str, emission_substance: str, compartment: str, product: str, product_unit: str, value: float, unit: str, flag: str | None = None, elementary_type: str = 'emission')[source]

Bases: FactBaseModel_uncertainty

activity: str
activity_unit: str
compartment: str
elementary_type: str
emission_substance: str
flag: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
product_unit: str
time: int
unit: str
value: float
year_emission: int | None
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.FinalUses_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, final_user: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_uncertainty

final_user: str
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.Imports_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, product_origin: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_uncertainty

location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
product_origin: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.OutputTotals_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, activity: str, output_compartment: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_uncertainty

activity: str
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

output_compartment: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.PackagingData_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str, unit: str, value: float, product_destination: str | None = None, associated_product: str | None = None, flag: str | None = None, time: int, product_type: str = 'supply', account_type: str | None = None)[source]

Bases: Supply_uncertainty

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.ProductionVolumes_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str | None = None, unit: str, value: float, flag: str | None = None, time: int, inventory_time: int | None = None, source: str | None = None, comment: str | None = None, price_type: str | None = None, account_type: str | None = None)[source]

Bases: FactBaseModel_uncertainty

account_type: str | None
activity: str | None
comment: str | None
flag: str | None
inventory_time: int | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

price_type: str | None
product: str
source: str | None
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.PropertyOfProducts_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str | None = None, product: str, value: float, activity: str | None = None, unit: str, description: str | None = None)[source]

Bases: FactBaseModel_uncertainty

activity: str | None
description: str | None
location: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.Resource_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, time: int, year_emission: int | None = None, location: str, activity: str, activity_unit: str, emission_substance: str, compartment: str, product: str, product_unit: str, value: float, unit: str, flag: str | None = None, elementary_type: str = 'emission')[source]

Bases: Emissions_uncertainty

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.SUTAdjustments_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, adjustment: str, product: str | None = None, product_origin: str | None = None, final_user: str | None = None, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_uncertainty

adjustment: str
final_user: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str | None
product_origin: str | None
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.SocialSatellite_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, activity: str, social_flow: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_uncertainty

activity: str
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

social_flow: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.Supply_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str, unit: str, value: float, product_destination: str | None = None, associated_product: str | None = None, flag: str | None = None, time: int, product_type: str = 'supply', account_type: str | None = None)[source]

Bases: FactBaseModel_uncertainty

account_type: str | None
activity: str
associated_product: str | None
flag: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
product_destination: str | None
product_type: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.Trade_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, time: int, product: str, export_location: str, import_location: str, value: float, unit: str, flag: str | None = None, price_type: str | None = None, source: str | None = None, account_type: str | None = None)[source]

Bases: FactBaseModel_uncertainty

account_type: str | None
export_location: str
flag: str | None
import_location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

price_type: str | None
product: str
source: str | None
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.TransferCoefficient_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str | None = None, output_product: str, input_product: str, activity: str, coefficient_value: float, unit: str, flag: str | None = None, time: int | None = None, transfer_type: str)[source]

Bases: FactBaseModel_uncertainty

activity: str
coefficient_value: float
flag: str | None
input_product: str
location: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

output_product: str
time: int | None
transfer_type: str
unit: str
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.Use_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str, unit: str, value: float, associated_product: str | None = None, flag: str | None = None, time: int, product_origin: str | None = None, product_type: str = 'use', account_type: str | None = None)[source]

Bases: FactBaseModel_uncertainty

account_type: str | None
activity: str
associated_product: str | None
flag: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
product_origin: str | None
product_type: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.Valuation_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, valuation: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_uncertainty

location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
time: int
unit: str
valuation: str
value: float
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.ValueAdded_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, activity: str, value_added_component: str, unit: str, value: float, time: int)[source]

Bases: FactBaseModel_uncertainty

activity: str
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

time: int
unit: str
value: float
value_added_component: str
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.WasteSupply_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str, unit: str, value: float, product_destination: str | None = None, associated_product: str | None = None, flag: str | None = None, time: int, product_type: str = 'supply', account_type: str | None = None, waste_fraction: bool)[source]

Bases: Supply_uncertainty

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

waste_fraction: bool
class dataio.schemas.bonsai_api.PPF_fact_schemas_uncertainty.WasteUse_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str, unit: str, value: float, associated_product: str | None = None, flag: str | None = None, time: int, product_origin: str | None = None, product_type: str = 'use', account_type: str | None = None, waste_fraction: bool)[source]

Bases: Use_uncertainty

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

waste_fraction: bool

dataio.schemas.bonsai_api.admin module

class dataio.schemas.bonsai_api.admin.DataResource(name: str, schema_name: str | BonsaiBaseModel, location: str | Path | None = None, task_name: str | None = None, stage: str | None = None, data_flow_direction: str | None = None, data_version: str | float | None = None, code_version: str | float | None = None, comment: str | None = None, last_update: datetime | None = None, created_by: str | None = None, license: str | None = None, license_url: str | None = None, dag_run_id: str | None = None, url: str | None = None, root_location: str | Path | None = None, api_endpoint: str | None = None, id: UUID | None = None)[source]

Bases: BonsaiBaseModel

api_endpoint: str | None
append_comment(comment: str)[source]
code_version: str | None
comment: str | None
created_by: str | None
dag_run_id: str | None
data_flow_direction: str | None
data_version: str | None
id: UUID | None
last_update: datetime
license: str | None
license_url: str | None
property location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_post_init(context: Any, /) None

This function is meant to behave like a BaseModel method to initialise private attributes.

It takes context as an argument since that’s what pydantic-core passes when calling it.

Parameters:
  • self – The BaseModel instance.

  • context – The context.

name: str
names

alias of Names

schema_name: str
stage: str | None
task_name: str | None
to_pandas() DataFrame[source]

Converts instances of BaseToolModel within BaseTableClass to a pandas DataFrame.

Returns:

DataFrame containing data from instances of BaseToolModel.

Return type:

pandas.DataFrame

url: str | None

dataio.schemas.bonsai_api.base_models module

class dataio.schemas.bonsai_api.base_models.CorrespondenceModel(*, created_by: str | None = None, create_time: ~datetime.datetime = <factory>)[source]

Bases: BonsaiBaseModel

create_time: datetime
created_by: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.base_models.DimensionModel(*, code: str | None = None, position: int | None = None, created_by: str | None = None)[source]

Bases: BonsaiBaseModel

classmethod check_code_names(v, field)[source]
code: str | None
created_by: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

position: int | None
class dataio.schemas.bonsai_api.base_models.FactBaseModel_samples(*, samples: list[float])[source]

Bases: BonsaiBaseModel

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

samples: list[float]
class dataio.schemas.bonsai_api.base_models.FactBaseModel_uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None)[source]

Bases: BonsaiBaseModel

confidence_interval_68max: float | None
confidence_interval_68min: float | None
confidence_interval_95max: float | None
confidence_interval_95min: float | None
distribution: str | None
max_value: float | None
min_value: float | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

standard_deviation: float | None
uncertainty_comment: str | None
variance: float | None
class dataio.schemas.bonsai_api.base_models.MatrixModel[source]

Bases: object

column_schema: FactBaseModel_uncertainty
row_schema: FactBaseModel_uncertainty

dataio.schemas.bonsai_api.correspondences module

class dataio.schemas.bonsai_api.correspondences.ActivityTypeCorrespondence(*, created_by: str | None = None, create_time: ~datetime.datetime = <factory>, description: str | None = None, comment: str | None = None)[source]

Bases: CorrespondenceModel

comment: str | None
description: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.correspondences.FlowObjectCorrespondence(*, created_by: str | None = None, create_time: ~datetime.datetime = <factory>, description: str | None = None, comment: str | None = None)[source]

Bases: CorrespondenceModel

comment: str | None
description: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.correspondences.LocationCorrespondence(*, created_by: str | None = None, create_time: ~datetime.datetime = <factory>, description: str | None = None, comment: str | None = None)[source]

Bases: CorrespondenceModel

comment: str | None
description: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.correspondences.ProductCorrespondence(*, created_by: str | None = None, create_time: ~datetime.datetime = <factory>, external_name: ~typing.Annotated[str, ~annotated_types.MaxLen(max_length=200)], external_description: str | None = None, base_name: ~dataio.schemas.bonsai_api.dims.FlowObject | None = None)[source]

Bases: CorrespondenceModel

base_name: FlowObject | None
external_description: str | None
external_name: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

dataio.schemas.bonsai_api.dims module

class dataio.schemas.bonsai_api.dims.ActivityType(*, code: str, position: int | None = None, created_by: str | None = None, parent_code: str | None = None, level: str | None = None, description: str | None = None, comment: str | None = None)[source]

Bases: ClassificationNode

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.dims.Calendar(*, code: str | None = None, position: int | None = None, created_by: str | None = None, description: str)[source]

Bases: DimensionModel

description: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.dims.ChemicalCompound(*, code: str, position: int | None = None, created_by: str | None = None, name: str, description: str | None = None, comment: str | None = None)[source]

Bases: DimensionModel

code: str
comment: str | None
description: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
names

alias of Names

class dataio.schemas.bonsai_api.dims.ClassificationNode(*, code: str, position: int | None = None, created_by: str | None = None, parent_code: str | None = None, level: str | None = None, description: str | None = None, comment: str | None = None)[source]

Bases: DimensionModel

code: str
comment: str | None
description: str | None
level: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

parent_code: str | None
class dataio.schemas.bonsai_api.dims.Compartment(*, code: str, position: int | None = None, created_by: str | None = None, name: str, description: str | None = None, comment: str | None = None)[source]

Bases: DimensionModel

code: str
comment: str | None
description: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
names

alias of Names

class dataio.schemas.bonsai_api.dims.DataQuality(*, code: str, position: int | None = None, created_by: str | None = None, name: str, description: str | None = None, comment: str | None = None)[source]

Bases: DimensionModel

code: str
comment: str | None
description: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
names

alias of Names

class dataio.schemas.bonsai_api.dims.ExternalDimensionTables(*, code: str | None = None, position: int | None = None, created_by: str | None = None, description: str, comment: str | None = None, urn: str | None = None)[source]

Bases: DimensionModel

comment: str | None
description: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

urn: str | None
class dataio.schemas.bonsai_api.dims.FlowObject(*, code: str, position: int | None = None, created_by: str | None = None, parent_code: str | None = None, level: str | None = None, description: str | None = None, comment: str | None = None)[source]

Bases: ClassificationNode

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.dims.LCIA(*, code: str, position: int | None = None, created_by: str | None = None, name: str, description: str | None = None, comment: str | None = None)[source]

Bases: DimensionModel

code: str
comment: str | None
description: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
names

alias of Names

class dataio.schemas.bonsai_api.dims.Level(*, code: str, position: int | None = None, created_by: str | None = None, name: str, description: str | None = None, comment: str | None = None)[source]

Bases: DimensionModel

code: str
comment: str | None
description: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
names

alias of Names

class dataio.schemas.bonsai_api.dims.Location(*, code: str, position: int | None = None, created_by: str | None = None, parent_code: str | None = None, level: str | None = None, description: str | None = None, comment: str | None = None)[source]

Bases: ClassificationNode

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.dims.Market(*, code: str, position: int | None = None, created_by: str | None = None, parent_code: str | None = None, level: str | None = None, description: str | None = None, comment: str | None = None)[source]

Bases: ClassificationNode

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.dims.UncertaintyDistribution(*, code: str, position: int | None = None, created_by: str | None = None, name: str, description: str | None = None, comment: str | None = None)[source]

Bases: DimensionModel

code: str
comment: str | None
description: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
names

alias of Names

class dataio.schemas.bonsai_api.dims.Unit(*, code: str | None = None, position: int | None = None, created_by: str | None = None, scientific_notation: Annotated[str, MaxLen(max_length=50)], name: Annotated[str | None, MaxLen(max_length=50)] = None, description: str | None = None, unit_dimension: str)[source]

Bases: DimensionModel

description: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str | None
names

alias of Names

scientific_notation: str
unit_dimension: str
class dataio.schemas.bonsai_api.dims.UnitConversion(*, code: str | None = None, position: int | None = None, created_by: str | None = None, unit: str, reference_unit: str, conversion_factor: float)[source]

Bases: DimensionModel

conversion_factor: float
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

reference_unit: str
unit: str
class dataio.schemas.bonsai_api.dims.Year(*, code: str | None = None, position: int | None = None, created_by: str | None = None, name: str, calendar: str)[source]

Bases: DimensionModel

calendar: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
names

alias of Names

dataio.schemas.bonsai_api.external_schemas module

class dataio.schemas.bonsai_api.external_schemas.ADBMonetaryIOT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, unit: str, value: float, comment: str | None = None, flag: str | None = None, supplier_name: str, supplier_code: str, user_name: str, user_code: str, price_type: str = 'current prices', money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: baseExternalSchemas

diagonal: bool | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

money_unit: str | None
names

alias of Names

price_type: str
supplier_code: str
supplier_name: str
user_code: str
user_name: str
class dataio.schemas.bonsai_api.external_schemas.AfricanMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: ExternalMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.AustralianMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: ExternalMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.BACITrade(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, time: int, product: str, export_location: str, import_location: str, value: float, unit: str, flag: str | None = None)[source]

Bases: FactBaseModel_uncertainty

export_location: str
flag: str | None
import_location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.external_schemas.BrokenYearMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: date, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: ExternalMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

time: date
class dataio.schemas.bonsai_api.external_schemas.ComexTrade(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, time: int, product: str, activity: str, export_location: str, import_location: str, value: float, unit: str, transport_mode: str | None = None, country_active_transport_mode: str | None = None, container: str | None = None, flag: str | None = None)[source]

Bases: FactBaseModel_uncertainty

activity: str
container: str | None
country_active_transport_mode: str | None
export_location: str
flag: str | None
import_location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
time: int
transport_mode: str | None
unit: str
value: float
class dataio.schemas.bonsai_api.external_schemas.EgyptianMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: date, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: BrokenYearMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.EuropeanMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: ExternalMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.ExternalMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: baseExternalSchemas

activity_code: str
activity_name: str
consumer_price: bool
diagonal: bool | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

money_unit: str | None
names

alias of Names

price_type: str
product_code: str
product_name: str
table_type: str
class dataio.schemas.bonsai_api.external_schemas.FAOstat(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, product_name: str, product: str, fao_element: str, location: str, time: int, value: float, unit: str, flag: str | None = None)[source]

Bases: FactBaseModel_uncertainty

fao_element: str
flag: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
product_name: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.external_schemas.FAOtrade(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, product_name: str, product: str, export_location: str, import_location: str, time: int, value: float, unit: str, flag: str | None = None)[source]

Bases: FactBaseModel_uncertainty

export_location: str
flag: str | None
import_location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
product_name: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.external_schemas.IndianMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: date, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: BrokenYearMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.IndustrialCommodityStatistic(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str | None = None, unit: str, value: float, flag: str | None = None, time: int, inventory_time: int | None = None, source: str | None = None, comment: str | None = None, price_type: str | None = None, account_type: str | None = None)[source]

Bases: ProductionVolumes_uncertainty

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.InternationalMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: ExternalMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.JapanMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: date, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: BrokenYearMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.NACEMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: ExternalMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.OECDMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: ExternalMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.OldEuropeanMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: ExternalMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.OlderEuropeanMonetarySUT(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, unit: str, value: float, comment: str | None = None, flag: str | None = None, table_type: str, product_code: str, product_name: str, activity_code: str, activity_name: str, price_type: str = 'current prices', consumer_price: bool = False, money_unit: str | None = None, diagonal: bool | None = None)[source]

Bases: ExternalMonetarySUT

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.PRODCOMProductionVolume(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str | None = None, unit: str, value: float, flag: str | None = None, time: int, inventory_time: int | None = None, source: str | None = None, comment: str | None = None, price_type: str | None = None, account_type: str | None = None, indicator: str)[source]

Bases: ProductionVolumes_uncertainty

indicator: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.PRODCOMSoldProductionVolume(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str | None = None, unit: str, value: float, flag: str | None = None, time: int, inventory_time: int | None = None, source: str | None = None, comment: str | None = None, price_type: str | None = None, account_type: str | None = None, indicator: str)[source]

Bases: ProductionVolumes_uncertainty

indicator: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.ProdcomTrade(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, time: int, product: int, export_location: str, import_location: str, value: float, unit: str, flag: str | None = None)[source]

Bases: FactBaseModel_uncertainty

export_location: str
flag: str | None
import_location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: int
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.external_schemas.StatCanChemProductionVolume(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str | None = None, unit: str, value: float, flag: str | None = None, time: int, inventory_time: int | None = None, source: str | None = None, comment: str | None = None, price_type: str | None = None, account_type: str | None = None)[source]

Bases: ProductionVolumes_uncertainty

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.UNdataEnergyBalance(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, activity: str, product: str, location: str, time: int, value: float, unit: str, comment: str | None = None, flag: str | None = None)[source]

Bases: FactBaseModel_uncertainty

activity: str
comment: str | None
flag: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.external_schemas.UNdataEnergyStatistic(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, activity: str, product: str, location: str, time: int, value: float, unit: str, comment: str | None = None, flag: str | None = None, conversion_factor: float | None = None)[source]

Bases: FactBaseModel_uncertainty

activity: str
comment: str | None
conversion_factor: float | None
flag: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
time: int
unit: str
value: float
class dataio.schemas.bonsai_api.external_schemas.UNdataWDI(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, value: float, unit: str, flag: str | None = None)[source]

Bases: FactBaseModel_uncertainty

flag: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

time: int
unit: str
value: float
class dataio.schemas.bonsai_api.external_schemas.USGSProductionVolume(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str | None = None, unit: str, value: float, flag: str | None = None, time: int, inventory_time: int | None = None, source: str | None = None, comment: str | None = None, price_type: str | None = None, account_type: str | None = None)[source]

Bases: ProductionVolumes_uncertainty

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.UnfcccProductionVolume(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, activity: str | None = None, unit: str, value: float, flag: str | None = None, time: int, inventory_time: int | None = None, source: str | None = None, comment: str | None = None, price_type: str | None = None, account_type: str | None = None)[source]

Bases: ProductionVolumes_uncertainty

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

class dataio.schemas.bonsai_api.external_schemas.baseExternalSchemas(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, time: int, unit: str, value: float, comment: str | None = None, flag: str | None = None)[source]

Bases: FactBaseModel_uncertainty

comment: str | None
flag: str | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

time: int
unit: str
value: float

dataio.schemas.bonsai_api.facts module

class dataio.schemas.bonsai_api.facts.CountryFootprint(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, act_code: str, region_code: str, value: float, unit_emission: str)[source]

Bases: FactBaseModel_uncertainty

class ConfigDict[source]

Bases: object

from_attributes = True
act_code: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

region_code: str
unit_emission: str
value: float
class dataio.schemas.bonsai_api.facts.CountryRecipe(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, product_code: str | None = None, unit_reference: str | None = None, act_code: str, region_code: str, value: float, unit_emission: str)[source]

Bases: FactBaseModel_uncertainty

class ConfigDict[source]

Bases: object

from_attributes = True
act_code: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product_code: str | None
region_code: str
unit_emission: str
unit_reference: str | None
value: float
class dataio.schemas.bonsai_api.facts.Footprint(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, flow_code: str, description: str | None = None, unit_reference: str | None = None, region_code: str, value: float = 0.0, unit_emission: str = 'tonnes CO2eq')[source]

Bases: FactBaseModel_uncertainty

description: str | None
flow_code: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

region_code: str
unit_emission: str
unit_reference: str | None
value: float
class dataio.schemas.bonsai_api.facts.Recipe(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, prefixed_id: str, flow: str, region_reference: str, unit_reference: str, flow_input: str, region_inflow: str | None = None, value_inflow: float | None = None, unit_inflow: str | None = None, value_emission: float, unit_emission: str, metrics: str)[source]

Bases: FactBaseModel_uncertainty

flow: str
flow_input: str
metrics: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

prefixed_id: str
region_inflow: str | None
region_reference: str
unit_emission: str
unit_inflow: str | None
unit_reference: str
value_emission: float
value_inflow: float | None

dataio.schemas.bonsai_api.ipcc module

class dataio.schemas.bonsai_api.ipcc.ContentData(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, product_code: str, content_code: str, product_name: str = None, content_name: str = None, value: float, unit: str, source: str)[source]

Bases: FactBaseModel_uncertainty

content_code: str
content_name: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product_code: str
product_name: str
source: str
unit: str
value: float
class dataio.schemas.bonsai_api.ipcc.Parameters(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, time: int = None, location: str = None, activity: str = None, product: str = None, flexible_category: dict | None = None, value: float, unit: str, source: str, flag: str | None = None, description: str)[source]

Bases: FactBaseModel_uncertainty

activity: str
description: str
flag: str | None
flexible_category: dict | None
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
source: str
time: int
unit: str
value: float

dataio.schemas.bonsai_api.matrix module

class dataio.schemas.bonsai_api.matrix.A_Matrix[source]

Bases: MatrixModel

column_schema

alias of ActivityColumns

row_schema

alias of ProductRows

class dataio.schemas.bonsai_api.matrix.ActivityColumns(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, activity: str, unit: str, time: int)[source]

Bases: FactBaseModel_uncertainty

activity: str
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

time: int
unit: str
class dataio.schemas.bonsai_api.matrix.ActivityRows(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, activity: str, unit: str, time: int)[source]

Bases: FactBaseModel_uncertainty

activity: str
location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

time: int
unit: str
class dataio.schemas.bonsai_api.matrix.B_Matrix[source]

Bases: MatrixModel

column_schema

alias of ProductColumns

row_schema

alias of EmissionRows

class dataio.schemas.bonsai_api.matrix.EmissionRows(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, emission_substance: str, compartment: str, unit: str, time: int)[source]

Bases: FactBaseModel_uncertainty

compartment: str
emission_substance: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

time: int
unit: str
class dataio.schemas.bonsai_api.matrix.IntensitiesMatrix[source]

Bases: MatrixModel

column_schema

alias of ProductColumns

row_schema

alias of EmissionRows

class dataio.schemas.bonsai_api.matrix.Inverse[source]

Bases: MatrixModel

column_schema

alias of ActivityColumns

row_schema

alias of ProductRows

class dataio.schemas.bonsai_api.matrix.ProductColumns(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, unit: str, time: int)[source]

Bases: FactBaseModel_uncertainty

location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
time: int
unit: str
class dataio.schemas.bonsai_api.matrix.ProductRows(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None, location: str, product: str, unit: str, time: int)[source]

Bases: FactBaseModel_uncertainty

location: str
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

product: str
time: int
unit: str

dataio.schemas.bonsai_api.metadata module

class dataio.schemas.bonsai_api.metadata.DataLicense(*, name: str, description: str | None = None, url: str, create_time: ~datetime.datetime = <factory>, created_by: ~dataio.schemas.bonsai_api.metadata.User | None = None)[source]

Bases: BonsaiBaseModel

Pydantic model for Data License.

create_time: datetime
created_by: User | None
description: str | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
names

alias of Names

url: str
class dataio.schemas.bonsai_api.metadata.MetaData(*, id: UUID, created_by: User, last_modified: datetime, license: DataLicense, version: Version)[source]

Bases: BonsaiBaseModel

created_by: User
id: UUID
last_modified: datetime
license: DataLicense
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

version: Version
class dataio.schemas.bonsai_api.metadata.User(*, email: EmailStr, name: str, is_active: bool = True, is_staff: bool = False, is_superuser: bool = False)[source]

Bases: BonsaiBaseModel

Pydantic model representing a user.

email: EmailStr
is_active: bool
is_staff: bool
is_superuser: bool
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

name: str
names

alias of Names

class dataio.schemas.bonsai_api.metadata.Version(*, version: str, create_time: ~datetime.datetime = <factory>, comments: str | None = None)[source]

Bases: BonsaiBaseModel

comments: str | None
create_time: datetime
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

version: str

dataio.schemas.bonsai_api.uncertainty module

class dataio.schemas.bonsai_api.uncertainty.PedigreeMatrix(*, reliability: int | None = None, completeness: int | None = None, temporal_correlation: int | None = None, geographical_correlation: int | None = None, technological_correlation: int | None = None)[source]

Bases: BonsaiBaseModel

completeness: int | None
geographical_correlation: int | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

reliability: int | None
technological_correlation: int | None
temporal_correlation: int | None
class dataio.schemas.bonsai_api.uncertainty.Uncertainty(*, variance: float | None = None, standard_deviation: float | None = None, confidence_interval_95min: float | None = None, confidence_interval_95max: float | None = None, confidence_interval_68min: float | None = None, confidence_interval_68max: float | None = None, distribution: str | None = None, min_value: float | None = None, max_value: float | None = None, uncertainty_comment: str | None = None)[source]

Bases: BonsaiBaseModel

confidence_interval_68max: float | None
confidence_interval_68min: float | None
confidence_interval_95max: float | None
confidence_interval_95min: float | None
distribution: str | None
max_value: float | None
min_value: float | None
model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

names

alias of Names

standard_deviation: float | None
uncertainty_comment: str | None
variance: float | None

Module contents